
CATA: Criticality Aware Task Acceleration
for Multicore Processors

Emilio Castillo∗†, Miquel Moreto∗†, Marc Casas∗, Lluc Alvarez∗‡, Enrique Vallejo‡, Kallia Chronaki∗, Rosa Badia∗§

Jose Luis Bosque‡, Ramon Beivide‡, Eduard Ayguade∗†, Jesus Labarta∗†, Mateo Valero∗†
∗Barcelona Supercomputing Center, †Universidad Politecnica de Catalunya, ‡Universidad de Cantabria,

§Artificial Intelligence Research Institute (IIIA) Spanish National Research Council (CSIC)
name.surname@bsc.es, name.surname@unican.es

Abstract—Managing criticality in task-based programming
models opens a wide range of performance and power opti-
mization opportunities in future manycore systems. Criticality
aware task schedulers can benefit from these opportunities by
scheduling tasks to the most appropriate cores. However, these
schedulers may suffer from priority inversion and static binding
problems that limit their expected improvements.

Based on the observation that task criticality information can
be exploited to drive hardware reconfigurations, we propose
a Criticality Aware Task Acceleration (CATA) mechanism that
dynamically adapts the computational power of a task depending
on its criticality. As a result, CATA achieves significant im-
provements over a baseline static scheduler, reaching average
improvements up to 18.4% in execution time and 30.1% in
Energy-Delay Product (EDP) on a simulated 32-core system.

The cost of reconfiguring hardware by means of a software-
only solution rises with the number of cores due to lock con-
tention and reconfiguration overhead. Therefore, novel architec-
tural support is proposed to eliminate these overheads on future
manycore systems. This architectural support minimally extends
hardware structures already present in current processors, which
allows further improvements in performance with negligible
overhead. As a consequence, average improvements of up to
20.4% in execution time and 34.0% in EDP are obtained,
outperforming state-of-the-art acceleration proposals not aware
of task criticality.

I. INTRODUCTION

In recent years, power limits and thermal dissipation con-
straints have extolled the importance of energy efficiency in
microprocessor designs. For this reason, modern computer sys-
tems implement different hardware mechanisms that allow to
reconfigure the computational capability of the system, aiming
to maximize performance under affordable power budgets.
For example, per-core power gating and Dynamic Voltage
and Frequency Scaling (DVFS) are common reconfiguration
techniques available on commodity hardware [1], [2]. In
SMT processors, the number of SMT threads per core or
the decode priority can be adjusted [3], [4], while in mul-
ticores, the prefetcher aggressiveness, the memory controller
or the last-level cache space assigned to an application can
be changed [5]–[7]. More recently, reconfigurable systems
that support core fusion or that can transform traditional
high performance out-of-order cores into highly-threaded in-
order SMT cores when required, have been shown to achieve
significant reductions in terms of energy consumption [8], [9].
However, the problem of optimally reconfiguring the hardware

is not solved in general as all the aforementioned solutions rely
on effective but ad-hoc mechanisms. Combining such solutions
for a wide set of reconfiguration problems is complex [4], and
introduces a significant burden on the programmer.

Recent advances in programming models recover the use of
task-based data-flow programming models to simplify parallel
programming in future manycores [10]–[15]. In these models
the programmer splits the code in sequential pieces of work,
called tasks, and specifies the data and control dependences
between them. With this information the runtime system
manages the parallel execution, scheduling tasks to cores and
taking care of synchronization among them. These models not
only ease programmability, but also can increase performance
by avoiding global synchronization points. However, the issue
of controlling reconfigurable hardware when using this simple
data-flow model is still not properly solved in the literature.

This work advocates an integrated system in which the
task-based runtime system controls hardware reconfiguration
according to the criticality of the different tasks in execution.
As such, the runtime can either schedule the most critical
tasks to the fastest hardware components or reconfigure those
components where the highly-critical tasks run. In this way,
the programmer only has to provide simple and intuitive
annotations and does not need to explicitly control the way
the load is balanced, how the hardware is reconfigured, or
whether a particular power budget is met. Such responsibil-
ities are mainly left to the runtime system, which decouples
the software and hardware layers and drives the design of
specific hardware components to support such functions when
required. To reconfigure the computation power of the sys-
tem, we consider DVFS, as it is a common reconfiguration
capability on commodity hardware. However, our criticality
aware approach can target reconfiguration of any hardware
component, as no DVFS specific assumptions are made.

The main contributions of the paper are:
• We compare two mechanisms for estimating task crit-

icality with user-defined static annotations and with a
dynamic solution operating at execution time. Both ap-
proaches are effective, but the simpler implementation of
the user-defined static annotations provides slightly better
performance and EDP results.

• We introduce Criticality Aware Task Acceleration
(CATA), a runtime system level technique that recon-

1



figures the frequency of the cores while keeping the
whole processor under a certain power budget. Average
improvements reach 18.4% and 30.1% in execution time
and EDP over a baseline scheduler on a 32-core system.

• For some applications, the DVFS reconfiguration penal-
ties caused by inherent serialization issues can become
a performance bottleneck. To overcome this problem,
we introduce a hardware component denoted Runtime
Support Unit (RSU), which relieves the runtime system
of carrying out frequency reconfigurations and can be
easily incorporated on top of existing solutions [16]–
[18]. For sensitive applications, up to an additional 8.5%
improvement in performance is obtained over CATA.

The integrated solution proposed in this paper, which goes
from the source code to the hardware level passing through
the runtime and the operating system, shows the need for a
multi-layer approach to optimally exploit the heterogeneity
and reconfiguration possibilities of future manycore systems.

This paper is organized as follows. Section II provides
background on the work. Section III presents our approaches
for task criticality-aware task acceleration. The experimen-
tal setup and evaluation results are detailed in Sections IV
and V. Related work is discussed in Section VI and, finally,
Section VII draws the main conclusions of this work.

II. BACKGROUND

This section describes the characteristics of task-based
programming models, the concept of criticality in them, the
scheduling techniques to exploit such criticality in heteroge-
neous architectures and the problems they present.

A. Task-Based Programming Models

Task-based programming models such as OpenMP 4.0 [10]
conceive the execution of a parallel program as a set of tasks
with dependences among them. Typically, the programmer
adds code annotations to split the serial code in tasks that can
potentially run in parallel. Each annotation defines a different
task type, while every execution of a given task type is denoted
a task instance. Also, the programmer specifies what data is
used by each task (called input dependences) and what data is
produced (called output dependences). The runtime system is
in charge of managing the execution of the tasks, releasing the
programmer from the burden of explicitly synchronizing tasks
and scheduling them to cores, thus easing programmability.

In order to manage task execution the runtime system builds
a task dependence graph (TDG), a directed acyclic graph
where nodes represent tasks and edges dependences among
them. Similarly to how an out-of-order processor schedules
instructions, the runtime system schedules a task on a core
when all its input dependences are ready and, when the
execution of the task finishes, its output dependences become
ready for the next tasks. This execution model decouples
the hardware from the application, allowing to apply many
optimizations at runtime level in a generic and application-
agnostic way [19], [20]. For instance, the information found
in the task dependences can be exploited to perform data

#pragma omp task criticality(1)
(critical)

#pragma omp task criticality(0)
(non-critical)

0

1

2

1

3
2

4

5

Task Dependence
Graph

3

0 6

0

1

O
n

 t
as

k 
su

b
m

is
si

o
n

HPRQ LPRQ

Work Stealing

Core 0
Fast

RUNTIME

Core 1
Fast

Core 2
Slow

Core 3
Slow

Fig. 1. Criticality assignment with bottom-level and static policies, and
Criticality-Aware Task Scheduling.

prefetching [21] or efficient data communication between
tasks [22], [23]. In this context, this paper exploits for the first
time the opportunities that task criticality information available
in the runtime system offer to reconfigure current multicores.

B. Task Criticality in Task-Based Programming Models

Criticality represents the extent to which a particular task
is in the critical path of a parallel application. In general,
criticality is difficult to estimate as the execution flow of an
application is dynamic and input-dependent. Two approaches
can be used to estimate the criticality of a task.

One approach is to dynamically determine the criticality of
the tasks during the execution of the application, exploring
the TDG of tasks waiting for execution and assigning higher
criticality to those tasks that belong to the longest dependency
path [24]. Figure 1 shows a synthetic example of this method.
In the TDG on the left, each node represents a task, each edge
of the graph represents a dependence between two tasks, and
the shape of the node represents its task type. The number
inside each node is the bottom-level (BL) of the task, which is
the length of the longest path in the dependency chains from
this node to a leaf node. The criticality of a task is derived from
its BL, where tasks with the highest BL and their descendants
in the longest path are considered critical. Consequently, the
square nodes in Figure 1 are considered critical.

The bottom-level approach does not require any input from
the programmer and it can dynamically adapt to different
phases of the application. However, this method has some
limitations. First, exploring the TDG every time a task is
created can become costly, specially in dense TDGs with short
tasks. Second, the task execution time is not taken into account
as only the length of the path to the leaf node is considered.
Third, only a sub-graph of the TDG is considered to estimate
criticality and some tasks marked as critical in such partial
TDG may not be critical in the complete TDG.

Another approach is to statically assign criticality to the
tasks, either using compiler analysis or allowing the program-
mer to annotate them. For this purpose, we have extended the
task directive in OpenMP 4.0 to specify criticality, #pragma

2



omp task criticality(c). The parameter c represents
the criticality level assigned to the given task type. Critical
tasks have higher values of c, while non-critical tasks have
a value of c = 0. The bottom left part of Figure 1 shows
how this directive is used to assign the criticality of the three
different task types in the example, where square nodes are
considered critical, while triangular and circular nodes are
estimated as non-critical. In this example and for the sake of
simplicity, tasks are assigned to the same criticality level with
both approaches (static annotations and bottom-level), but this
does not happen in general.

The main problem of static annotations is that estimating
the criticality of a task can be complex and input dependent.
However, by analyzing the execution of the application it is
feasible to identify tasks that block the execution of other
tasks, or tasks with long execution times that could benefit
from running in fast processing elements.

The task criticality information obtained with any of these
approaches can be exploited by the runtime system in multiple
ways, specially in the context of heterogeneous systems.

C. Criticality-Aware Task Scheduling and Limitations

The task scheduler is a fundamental part of task-based run-
time systems. Its goal is to assign tasks to cores, maximizing
the utilization of the available computational resources and
ensuring load balance. The typical scheduler of task-based
runtime systems assigns tasks to available cores in a first
in, first out (FIFO) manner without considering the criticality
of the tasks. In this approach, tasks that become ready for
execution are kept in a ready queue until there is an available
core. The main limitation of the FIFO scheduler when running
on heterogeneous systems is that tasks are assigned blindly to
fast or slow cores, regardless of their criticality.

A Criticality-Aware Task Scheduler [24] (CATS) can solve
the blind assignment problem of the FIFO scheduler. CATS is
focused on heterogeneous architectures, ensuring that critical
tasks are executed on fast cores and assigning non-critical tasks
to slow cores. As shown in Figure 1, CATS splits the ready
queue in two: a high priority ready queue (HPRQ), and a low
priority ready queue (LPRQ). Tasks identified as critical are
enqueued in the HPRQ and non-critical ones in the LPRQ.
When a fast core is available it requests a task to the HPRQ,
and the first ready task is scheduled on the core. If the HPRQ
is empty, a task from the LPRQ can be scheduled on a fast
core. If no tasks are ready, the core remains idle until some
ready task is available. Similarly, slow cores look for tasks in
the LPRQ. Task stealing from the HPRQ is accepted only if
no fast cores are idling. Figure 1 illustrates the runtime system
extensions and the scheduling decisions for the synthetic TDG
on the left.

CATS solves the blind assignment problem of FIFO sched-
ulers. However, even if it considers the criticality of the tasks,
it may present misbehaviors in the scheduling decisions that
lead to load imbalance in heterogeneous architectures:

• Priority inversion: when a critical task has to be sched-
uled and all the fast cores are in use by non-critical tasks,

it is scheduled to a slow core.
• Static binding for the task duration: when a task finishes

executing on a fast core, this core can be left idle even
if other critical tasks are running on slow cores.

These problems happen because the computational capabil-
ities of the cores are static and, once a task is scheduled to a
core, it is not possible to re-distribute resources if the original
circumstances change. In order to overcome these limitations,
this paper proposes a runtime-driven criticality-aware task
acceleration scheme, resulting in a responsive system that
executes critical tasks on fast cores and re-distributes the
computational capabilities of the architecture to overcome the
priority inversion and static binding problems.

III. CRITICALITY-AWARE TASK ACCELERATION
USING DVFS RECONFIGURATIONS

This section proposes to exploit reconfiguration opportuni-
ties that task criticality information can provide to the runtime
system to perform Criticality-Aware Task Acceleration (CATA)
in task-based programming models. First, a pure software
approach where the runtime system drives the reconfigurations
according to the criticality of the running tasks is introduced.
Then, hardware extensions required to support fast reconfigu-
rations from the runtime system are described in detail.

DVFS is selected as a proof-of-concept for the reconfigura-
tion mechanism, as it allows to accelerate different cores and
it is already present in the majority of current architectures.
Nevertheless, the proposed ideas and the runtime system
extensions are generic enough to be applied or easily adapted
to other reconfiguration techniques. We further assume that
two frequency levels are allowed in the system, which can
be efficiently implemented with dual-rail Vdd circuitry [25].
Extending the proposed ideas to more levels of acceleration
is left as future work. In addition, Section VI discusses other
reconfiguration approaches that could benefit from the ideas
proposed in this paper.

A. Criticality-Aware Runtime-Driven DVFS Reconfiguration

The runtime system is extended with several structures to
manage hardware reconfiguration according to the criticality
of the tasks. Figure 2 shows these extensions. Similar to
the CATS scheduler, the runtime system splits the ready
queue in a HPRQ for the critical tasks and a LPRQ for
the non-critical tasks. To manage the reconfigurations, the
Reconfiguration Support Module (RSM) tracks the state of
each core (Accelerated or Non-Accelerated), the criticality of
the task that is being executed on each core (Critical, Non-
Critical, or No Task), and the power budget. The power budget
is represented as the maximum amount of cores that can
simultaneously run at the fastest frequency, and is provided
to the runtime system as a parameter.

When a core requests a new task to the scheduler it first
tries to assign critical tasks from the HPRQ and, if no critical
tasks are ready, a non-critical task from the LPRQ is selected.
If there is enough power budget the core is set to the fastest
power state, even for non-critical tasks. If there is no available

3



HPRQ LPRQ

Task request
and execution

RUNTIME

Core 1
fast

Core 2
slow

Core 3
slow

DVFS
Cntrl

RSM
Power budget:
State:
Criticality:

A A
C C

2
NA NA
NC NC

User
Space

Cpufreq
Driver

Kernel 
Space

SOFTWARE

Core 0
fast

HARDWARE

Fig. 2. Runtime system support for Criticality-Aware Task Acceleration
(CATA) using DVFS reconfigurations. The runtime maintains status (Ac-
celerated, Not Accelerated) and criticality (Critical, Non-Critical, No Task)
information for each core in the Reconfiguration Support Module (RSM).

power budget and the task is critical, the runtime system looks
for an accelerated core executing a non-critical task, decreases
its frequency, and accelerates the core of the new task. In the
case that all fast cores are running critical tasks, the incoming
task cannot be accelerated, so it is tagged as non-accelerated.
Every time an accelerated task finishes, the runtime system
decelerates the core and, if there is any non-accelerated critical
task, one of them is accelerated.

To drive CPU frequency and voltage changes, the runtime
system uses the standard interface provided by the cpufreq
daemon of the Linux kernel. The cpufreq daemon governor
is set to accept changes from user space. Figure 2 shows
how the runtime system communicates with the cpufreq
framework. Frequency and voltage changes are performed by
writing the new power state in a configuration file mapped
in the file system, having one file per core. The cpufreq
daemon triggers an interrupt when it detects a write to one
of these files, and the kernel executes the cpufreq driver.
The driver writes the new power state in the DVFS controller,
establishing the new voltage and frequency values for the core,
and then the architecture starts the DVFS transition. Finally,
the kernel updates all its internal data structures related to the
clock frequency and returns the control to the runtime system.

Although this approach is able to solve the priority inversion
and static binding issues by reconfiguring the computational
capabilities assigned to the tasks, it raises a new issue for
performance: reconfiguration serialization. Some steps of the
software-driven reconfiguration operations inherently need to
execute sequentially, since concurrent updates could tran-
siently set the system in an illegal state that exceeds the
power budget. Furthermore, invoking an interrupt and running
the corresponding cpufreq driver in the kernel space can
become a performance bottleneck. As a result, all the steps
required to reconfigure the core frequency can last from tens
of microseconds to over a millisecond in our experiments,
becoming a potential point of contention for large core counts.

B. Architectural Support for DVFS Reconfiguration

With the trend towards highly parallel multicores the fre-
quency of reconfigurations will significantly increase. This will
be exacerbated by the increasing trend towards fine-grain task
programming models with specific hardware support for task

HPRQ LPRQ

Task request
and execution

RUNTIME

Core 1
fast

Core 2
slow

Core 3
slow

DVFS
Cntrl

RSU
Power budget:
State:
Criticality:
NA Power Level:
A Power Level:

A A
C C

2
NA NA
NC NC

SOFTWARE

Core 0
fast

HARDWARE

3
0

Fig. 3. Architectural and runtime system support for Criticality-Aware
Task Acceleration (CATA) using DVFS reconfigurations. The RSU module
implements the hardware reconfiguration functionality, and stores the same
information as the RSM, plus the DVFS levels to use with Accelerated and
Not Accelerated tasks.

creation, data-dependencies detection and scheduling [26]–
[28]. Consequently, software-driven reconfiguration operations
be inefficient in future multicores. In such systems, hardware
support for runtime-driven reconfigurations arises as a suitable
solution to reduce contention in the reconfiguration process.

We propose a new hardware unit, the Runtime Support
Unit (RSU), which implements the reconfiguration algorithm
explained in the previous section. The RSU avoids continuous
switches from user to kernel space, reducing the latency
in reconfigurations and removing contention due to recon-
figuration serialization. As illustrated in Figure 3, the RSU
tracks the state of each core and the criticality of the running
tasks to decide hardware reconfigurations and notify per-core
frequency changes to the DVFS controller.

1) RSU Management
The RSU stores the criticality of the task running on each

core (Critical, Non-Critical, or No Task), the status of each
core (Accelerated or Non-Accelerated), the corresponding Ac-
celerated and Non-Accelerated Power Levels to configure the
DVFS controller, and the overall power budget for the system.

To manage the RSU, the ISA is augmented with ini-
tialization, reset and disabling instructions (rsu_init,
rsu_reset, and rsu_disable, respectively), and control
instructions to notify the beginning of the execution of tasks
(rsu_start_task(cpu,critic)) and the completion of
tasks (rsu_end_task(cpu)). Finally, another instruction
is added to read the criticality of a task running in the RSU
for virtualization purposes (rsu_read_critic(cpu)).

An alternative implementation could manage the RSU
through a memory mapped schema. We have selected the ISA
extension approach due to its simple implementation. As the
RSU is only accessed twice per executed task, both solutions
are expected to behave similarly.

2) RSU Operation
The RSU reconfigures the frequency and the voltage of each

core upon two different events: task execution start and end.
Whenever one of these two events occurs, the RSU inspects its
current state to determine which cores have to be accelerated
and which ones decelerated. This decision is taken with the
same algorithm presented in Section III-A. When a task starts
and there is available power budget the core is accelerated. If

4



the task is critical and there is no power budget available but a
non-critical task is accelerated, the core of the non-critical task
is decelerated and then the core of the new task is accelerated.
If all the other tasks are critical the new task is executed at
low frequency. When a task finishes the RSU decelerates its
core and, if there is a critical task running on a non-accelerated
core, it is accelerated.

3) RSU Virtualization
The operating system (OS) saves and restores the task

criticality information at context switches. When a thread is
preempted the OS reads the criticality value from the RSU
and stores it in the associated kernel thread_struct data
structure. The OS then sets a No Task value in the RSU to
re-schedule the remaining tasks. When a thread is restored its
task criticality value is written to the RSU. This design allows
several concurrent independent applications to share the RSU.

4) Area and Power Overhead
The RSU requires a storage of 3 bits per core for the criti-

cality and status fields, and log2 num cores bits for the power
budget. In addition, two registers are required to configure the
critical and non-critical power states of the DVFS controller.
These registers require log2 num power states bits and are
set to the appropriate values at OS boot time. This results in
a total storage cost of 3 × num cores + log2 num cores +
2 × log2 num power states bits. The overhead of the RSU
has been evaluated using CACTI [29]. Results show that the
RSU adds negligible overheads in area (less than 0.0001% in
a 32-core processor) and in power (less than 50µW ).

5) Integration of RSU and TurboMode
The RSU can be seen as an extension to TurboMode

implementations such as Intel’s Turbo Boost [16], AMD Turbo
Core [17], or dynamic TurboMode [18]. TurboMode allows
active cores to run faster by using the power cap of the
sleeping cores. A core is considered active as long as it
is in the C0 or C1 ACPI power states: C0 means that the
core is actively executing instructions, while C1 means that it
has been briefly paused by executing the halt instruction
in the OS scheduler. If a core remains in a C1 state for
a long period, the OS suggests to move the core to C3

or a deeper power state, considering it inactive. Transitions
between different power states are decided in a hardware
microcontroller integrated in the processor die. Whenever a
core is set to C3 or deeper power state, some of the active
cores in the C0 state can increase their frequency as long as
it does not exceed the overall power budget. Thus, the RSU
registers could be added to the TurboMode microcontroller to
accelerate parallel applications according to the task criticality
with minimal hardware overhead.

IV. EXPERIMENTAL SETUP

We employ Gem5 [30] to simulate an x86 full-system
environment that includes application, runtime system and OS.
Gem5 has been extended with a DVFS controller that allows to
reconfigure the voltage and the frequency of each core [31].
Two frequency levels are allowed, 1 and 2 GHz, similar to
an efficient dual-rail Vdd implementation [25]. In addition,

TABLE I
PROCESSOR CONFIGURATION.

Chip details
Core count 32
Core type Out-of-order single threaded

Core details

DVFS Fast cores: 2 GHz, 1.0 V
configurations Slow cores: 1 GHz, 0.8 V

25µs reconfiguration latency
Fetch, issue, 4 instr/cycle
commit bandwidth
Branch predictor 4K selector, 4K G-share, 4K bimodal

4-way BTB 4K entries, RAS 32 entries
Issue queue Unified 64 entries
Reorder buffer 128 entries
Register file 256 INT, 256 FP
Functional units 4 INT ALU (1 cyc), 2 mult (3 cyc), 2 div (20 cyc)

2 FP ALU (2 cyc), 2 mult (4 cyc), 2 div (12 cyc)
2 Ld/St unit (1 cyc)

Instruction L1 32KB, 2-way, 64B/line (2 cycles hit)
Data L1 64KB, 2-way, 64B/line (2 cycles hit)
Instruction TLB 256 entries fully-associative (1 cycle hit)
Data TLB 256 entries fully-associative (1 cycle hit)

NoC and shared components
L2 Unified shared NUCA, banked 2MB/core, 8-way

64B/line, 15/300 cycles hit/miss
Coherence protocol MESI, distributed 4-way cache directory 64K entries
NoC 4× 8 Mesh, link 1 cycle

the RSU described in Section III-B and a TurboMode model
have also been implemented and integrated with the DVFS
module. Power consumption is evaluated with McPAT [32]
using a process technology of 22 nm and the default clock
gating scheme of the tool. We perform simulations with
32 cores, using the detailed out-of-order CPU and detailed
memory model of Gem5 configured as shown in Table I. Three
heterogeneous configurations are considered: 25%, 50%, and
75% of fast cores, which corresponds to 8, 16, and 24 fast
cores out of the total of 32 cores. In the experiments with
CATS, the frequency of each core does not change during the
execution, simulating a heterogeneous multicore with different
performance ratios among cores. For CATA, the DVFS module
varies core frequencies, reassigning the computational power
across cores without exceeding the total power budget.

The simulated system is a Gentoo Linux with a kernel
2.6.28-4. Nanos++ 0.7a [11] is used for the task runtime
library, which supports OpenMP 4.0 constructs [10] and
task criticality annotations. We have developed a driver to
manage the DVFS controller within the cpufreq framework.
Nanos++ requests frequency changes to the cpufreq frame-
work by writing to a specific set of files, one per core. Any
modification to these files triggers the cpufreq daemon to
invoke the developed driver that sets the DVFS controller to
the requested state. Note that this is the same mechanism found
in real systems that support user space governors for DVFS.

To test the different proposals, we make use of a subset
of six benchmarks from PARSECSs [33], a task-based imple-
mentation of the PARSEC suite [34] written in OpenMP 4.0.
The benchmarks are compiled with Mercurium 1.99 source-to-
source compiler [11], using gcc 4.6.4 as the backend compiler
to generate the final binary. Simlarge input sets are used for

5



8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sp
ee
du
p

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

FIFO CATS+BL CATS+SA CATA

8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

No
rm

al
iz

ed
 E

DP

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

FIFO CATS+BL CATS+SA CATA

Fig. 4. Speedup and Energy-Delay Product (EDP) results with an increasing number of fast cores (8, 16, 24) on a 32-core processor. CATS+BL makes use
of bottom-level and CATS+SA of static annotations methods to estimate task criticality. Results are normalized to the FIFO scheduler.

all the experiments and the whole parallel section of each
benchmark is simulated.

The selected benchmarks are representative state-of-the-
art parallel algorithms from different areas of computing
and exploit different parallelization approaches: Blackscholes
and Swaptions use fork-join parallelism, Fluidanimate is a
3D stencil, and Bodytrack, Dedup and Ferret use pipeline
parallelism. For versions with static annotations, each task
type is annotated with the desired criticality level. Fluidan-
imate has the maximum number of task types, eight, and on
average, four criticality annotations were provided. To chose
the proper criticality level, we make use of existing profiling
tools to visualize the parallel execution of the application and
identify its critical path. We complement this analysis with
the criticality level identified by the bottom-level approach to
decide the final criticality level of each task type.

V. EVALUATION

A. Criticality-Aware Task Scheduling
Figure 4 shows the execution time speedup and the nor-

malized Energy-Delay-Product (EDP) of the four different
software-only implementations of the system: FIFO, two
variants of CATS which employ bottom-level (CATS+BL)
and static annotations (CATS+SA) as criticality estimation
methods, and CATA, which is analyzed in the next section.
All results are normalized to the FIFO scheduler.

Results show that CATS solves the blind assignment prob-
lem of FIFO, providing average speedups of up to 5.6% for
CATS+BL and up to 7.2% for CATS+SA with 8 fast cores.
Static annotations perform better in these applications than
bottom-level, which was originally designed and evaluated
for HPC applications [24]. This happens because the static
annotations approach does not suffer the overhead of exploring
the TDG of the application, in contrast to bottom-level.

However, not all benchmarks benefit from exploiting task
criticality in CATS. Fork-join or stencil applications (Blacksc-
holes, Swaptions and Fluidanimate) present tasks with very

similar criticality levels. As a result, scheduling critical tasks
to fast cores does not significantly impact performance. In fact,
the overheads of the bottom-level approach can degrade per-
formance, reaching up to a 9.8% slowdown in Fluidanimate,
where each task can have up to nine parent tasks.

Applications with complex TDGs based on pipelines (Body-
track, Dedup and Ferret) benefit more from CATS. These
applications contain tasks with significantly different criticality
levels. For example, in the case of Dedup and Ferret there
are compute-intensive tasks followed by I/O-intensive tasks to
write results that are in the critical path of the application. In
these cases, a proper identification and scheduling of critical
tasks yields important performance improvements, reaching up
to 20,2% in Dedup. In the case of Bodytrack, task duration
can change up to an order of magnitude among task types.
Since CATS+BL identifies critical tasks based only on the
length of the critical path in the TDG, it obtains smaller
performance improvements than CATS+SA. In the case of
Dedup and Ferret, both schedulers perform similarly, although
the lower overhead of CATS+SA slightly favors performance
in some cases.

Figure 4 also shows the normalized EDP of all the mech-
anisms. We observe that the improvements in execution time
translate into energy savings. CATS+SA obtains average EDP
reductions between 8.2% and 11.4%, while CATS+BL EDP
reductions ranges between 3.7% and 8.2%. Fork-join or stencil
applications do not obtain significant EDP reduction. It is
noticeable the effect of CATS+BL overhead in the case of
Fluidanimate with 8 fast cores, as EDP increases by 22.1%
over the baseline. In contrast, significant EDP improvements
occur in the benchmarks with complex TDGs, achieving EDP
reductions up to 31.4% in Dedup with 16 fast cores.

B. Criticality-Aware Task Acceleration

CATA can dynamically reconfigure the DVFS settings of
the cores based on the criticality of the tasks they execute,
avoiding the static binding and priority inversion issues of

6



8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Sp
ee
du

p

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

CATA CATA+RSU TurboMode

8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24 8 16 24
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

No
rm

al
iz

ed
 E

DP

Blackscholes Swaptions Fluidanimate Bodytrack Dedup Ferret Average

CATA CATA+RSU TurboMode

Fig. 5. Speedup and Energy-Delay Product (EDP) results with an increasing number of fast cores (8, 16, 24) on a 32-core processor. Results are normalized
to the FIFO scheduler.

CATS, as discussed in Section II-C. Figure 4 shows the
performance and EDP improvements that CATA achieves over
FIFO. Based on the results in Section V-A, we evaluate CATA
using static annotations for criticality estimation.

Results show that CATA achieves average speedups of
15.9% to 18.4% over FIFO, and from 8.2% to 12.7% better
than CATS+SA. The main improvements of CATA are ob-
tained in fork-join or stencil applications, in particular Swap-
tions and Fluidanimate. In these applications, when tasks finish
their execution before a synchronization point, CATA reassigns
the available power budget to the remaining executing tasks,
reducing the load imbalance. In contrast, in Blackscholes
the number of tasks is very large and the load imbalance
is low. This causes CATA to provide minimal performance
benefits and even to present slight slowdowns with 24 fast
cores. The slowdown is due to the overhead of frequency
reconfigurations. In the applications with pipeline parallelism
the performance improvement over CATS is lower, but still
CATA obtains noticeable speedups of up to 28% in Bodytrack
with 8 fast cores. CATA average improvements in EDP are
significant, ranging from 25.4% to 30.1%. These gains are
larger than the improvements in execution time as CATA
reduces the power consumption of idle cores while it avoids
priority inversion and static binding problems. Benchmarks
with a large amount of load imbalance such as Swaptions and
Fluidanimate dramatically reduce EDP, halving the baseline
with 24 fast cores. When a task finishes and there are no other
tasks ready to execute, CATA decelerates the core reducing the
average number of fast cores decreasing power consumption.

C. Architecturally Supported CATA

Despite the significant performance and power benefits,
CATA can be further improved by reducing the overhead
of reconfiguring the computational power of the cores. As
described in Section III-B, frequency reconfigurations have
to be serialized to avoid potentially harmful power states. In

CATA this is done using locks and, as a result, it suffers from
reconfiguration serialization overheads as the number of cores
increases. This issue can become a bottleneck when one of the
two following conditions hold: i) the amount of time spent per-
forming reconfigurations is significant, or ii) the distribution
of reconfigurations over time has a bursty behavior, which is
the case in applications with synchronization barriers.

An analysis of the execution of the applications shows
that the average reconfiguration latency of CATA ranges from
11 µs to 65 µs. However, maximum lock acquisition times
in Blackscholes, Fluidanimate and Bodytrack reach several
milliseconds (from 4.8 ms to 15 ms) due to lock contention.
Additionally, although the average overhead of the reconfigu-
ration time of the six applications ranges acceptable values
of 0.03% to 3.49%, this overhead can be in the critical
path and introduce load imbalance, increasing execution time
significantly more than this average percentage as a result.

The RSU hardware component introduced in Section III-B
speeds up reconfigurations and avoids taking locks as it
centralizes all the reconfiguration operations. Figure 5 shows
performance and EDP results using CATA, CATA+RSU and
also TurboMode, which is discussed in the next section.
Results are normalized to the FIFO scheduler to ease the
comparison with Figure 4. On average, CATA+RSU further
improves the performance of CATA, reaching an average
20.4% improvement over FIFO on a 32-core processor with
16 fast cores (and 3.9% faster than CATA). Performance
improvements are most noticeable in applications that suffer
lock contention (Blackscholes, Fluidanimate and Bodytrack),
reaching an average speedup over CATA of 4.4% on the
analyzed applications, significantly reducing the performance
degradation shown by Blackscholes with 24 fast cores, and
achieving 8.5% speedup over CATA in Bodytrack with 24 fast
cores. CATA+RSU reaches a maximum speedup over FIFO of
40.2% in Fluidanimate with 24 fast cores. Regarding the other
applications (Swaptions, Dedup and Ferret), the additional

7



improvements are on average small as lock contention is very
low. Observed performance differences are mainly caused by
changes in scheduling decisions induced by reconfigurations.

In EDP the average improvements range from 29.7% to
34.0% over FIFO and from 5.6% to 7.4% over CATA. The
main reasons behind EDP reduction are the performance
improvements and faster reconfigurations. Furthermore, in
applications with a high lock contention the EDP reductions
against CATA range from 4.0% to 9.4%. This proves the
effectiveness of the proposed CATA+RSU and justifies the
usefulness of such architectural support.

D. Comparison with Other Proposals

Finally, we compare CATA and CATA+RSU with an im-
plementation of TurboMode [18]. For a fair comparison,
our implementation of TurboMode considers the same two
frequencies as in the previous experiments, with an overall
power budget assigned in terms of maximum number of fast
cores. TurboMode is not aware of task criticality, so the base
FIFO scheduler is employed and all active cores (in state
C0) are assumed to be running critical tasks. Whenever an
accelerated core executes the halt instruction triggered by
the OS to transition from C0 to C1 state, the core notifies
the TurboMode controller. The TurboMode controller lowers
the frequency of the core, selects a random active core, and
accelerates it. When the OS awakes a sleeping core, it notifies
the TurboMode controller, and the core is accelerated only if
there is enough power budget. Being able to quickly accelerate
or decelerate at the C1 state benefits applications with barriers
or short idle loops, which do not need to wait for deeper
sleeping states to yield their power budget to other cores.

Figure 5 shows the performance and EDP results of Tur-
boMode. On average, TurboMode obtains slightly worse re-
sults than CATA, reaching between 14.4% and 15.7% per-
formance improvements over FIFO. CATA+RSU outperforms
TurboMode, with speedups between 4.0% and 5.3% and
equivalent hardware cost. TurboMode presents competitive
performance with CATA+RSU in fork-join and stencil ap-
plications (Blackscholes, Swaptions and Fluidanimate), but
at the cost of higher energy consumption. This happens
because CATA+RSU reconfigures the frequencies right at
the moment that a task finishes its execution, while with
TurboMode the reconfiguration must wait until the thread
goes to sleep and triggers the halt instruction in the OS
scheduler. In pipeline applications that overlap different types
of tasks (Bodytrack, Dedup and Ferret), TurboMode performs
worse than CATA+RSU with performance degradations up to
18.7% in Bodytrack with 24 fast cores. In the case of EDP
results, pipeline applications obtain moderate improvements,
with average results close to the ones obtained with CATS+SA.

TurboMode significantly improves performance over FIFO
as it can solve the static binding issue. Since TurboMode is
not aware of what is being executed in each core and its cor-
responding criticality, it may accelerate a non-critical task or
runtime idle-loops. In contrast, CATA and CATA+RSU always
know what to accelerate, effectively obtaining performance

improvements. However, we have observed that TurboMode
exhibits some characteristics that our proposals could benefit
from. A thread executing a task can suddenly issue a halt
instruction if the task requires any kernel service that suspends
the core for a while; I/O operations, contention on locks that
protects the page-fault and memory allocation routines are
some examples that we have measured in Swaptions, Dedup
and Ferret applications. CATA approaches are not aware of
this situation causing the halted core to retain its accelerated
state. On the contrary, TurboMode can drive that computing
power to any other core that is doing useful work.

VI. RELATED WORK

A. Task-Based Programming Models

All the task-based programming models that have emerged
in the last years can benefit from the ideas in this paper.
To attain this goal, these programming models require some
basic support to identify task criticality. The static annotations
approach can be easily adopted in all task-based programming
models by incorporating compiler directives or language ex-
tensions that allow programmers to express the criticality of
the tasks. In contrast, the bottom-level approach [24] is only
suitable for task-based programming models that manage the
execution of the tasks with a TDG, such as OpenMP 4.0 [10],
OmpSs [11], Intel TBB [35], Codelets [12], StarPU [13],
task extensions for Cilk [15], and Legion [14], but cannot
be applied to task-based programming models that require the
programmer to manage the execution of the tasks, either by
organizing them manually (like in Sequoia [36]) or adding
explicit synchronization between tasks (like in Charm++ [37],
Habanero [38]). Provided that task criticality information is
present in the runtime system of any task-based programming
model, the extensions proposed in this paper can also be
incorporated to accelerate critical tasks.

B. Criticality Estimation and Exploitation

The identification of critical code segments of parallel
applications has been studied in fork-join programming mod-
els, where performance is often conditioned by the slowest
thread. Meeting Points [39] instruments programs to monitor
the progress of each thread and boosts the execution in
delayed cores. However, it only works for balanced programs,
in which all threads run the same loop count with similar
amount of computation. DCB [40] extends the model to
unbalanced loops and to threads with different code in pipeline
parallel programs, using an epoch-based approach in the
latter case. However, it requires a significant profiling and
instrumentation of the application. BIS [41] and Criticality
Stacks [42] determine criticality based on hardware counters
and idle thread detection, and raise frequency accordingly.
Additional proposals migrate threads to fast cores [43], [44]
or perform task stealing [45]. These approaches are suitable
for traditional fork-join programming models where all threads
perform similar computation. However, they are not applicable
to task-based programming models where tasks have different
criticality according to the task dependence graph.

8



C. Dynamic Voltage and Frequency Scaling

DVFS exploits slack in the computation to lower voltage and
frequency, and save energy. Per-core DVFS is introduced by
Donald and Martonosi [1] in the context of thermal manage-
ment. Fine-grained DVS employing on-chip buck converters
for per-core voltage switching is first studied by Kim et
al. [46]. A significant drawback of on-chip regulators is their
low energy efficiency, especially for low voltages. Dual-rail
Vdd systems used for near-threshold designs [47], [48], are
more energy efficient but only for two possible frequencies.
Due to its energy efficiency and low switching latency, we
consider dual-rail Vdd support in our evaluation, although our
proposals can be adapted to other DVFS support as well as
other hardware reconfiguration capabilities.

DVFS is typically used to save energy in program phases
where running at the highest frequency is not crucial for per-
formance. These phases can be either determined at compile
time [49] or tracking the evolution of hardware performance
counters at execution time [50], [51]. In this paper we propose
a runtime-driven approach that exploits task criticality to deter-
mine which program parts can be executed at low frequency.

D. Reconfiguration Techniques

Multiple techniques to exploit heterogeneous architectures
and reconfiguration capabilities have been proposed, such as
migrating critical sections to fast cores [43], fusing cores
together when high performance is required for single-
threaded code [9], reconfiguring the computational power of
the cores [8], folding cores or switching them off using power
gating [4], or using application heartbeats to assign cores and
adapt the properties of the caches and the TLBs according
to the specified real-time performance constraints [52]. Our
proposal is independent from these mechanisms, which could
be also applied. However, Vega et al. [4] show that multiple
power-saving mechanisms (in their study, DVFS and power-
gating) can interact in undesired ways whereas a coordinated
solution is more efficient. A coordinated solution of CATA
and other power-saving mechanisms is left for future work.

VII. CONCLUSIONS

Hardware mechanisms that allow reconfiguring the compu-
tational capabilities of the system are a common feature in
current processors, as they are an effective way to maximize
performance under the desired power budget. However, opti-
mally deciding how to reconfigure the hardware is a challeng-
ing problem, because it highly depends on the behavior of
the workloads and the parallelization strategy used in multi-
threaded programs. In task-based programming models, where
a runtime system controls the execution of parallel tasks, the
criticality of the tasks can be exploited to drive hardware
reconfiguration decisions in the runtime system.

This paper presents an integrated solution in which the
runtime system of task-based programming models performs
Criticality Aware Task Acceleration (CATA). In this approach
the runtime system schedules tasks to cores and controls their
DVFS settings, accelerating the cores that execute critical

tasks and setting the cores that execute non-critical tasks to
low-frequency power-efficient states. Since performing DVFS
reconfigurations in software can cause performance overheads
due to serialization issues, this paper also proposes a hardware
component, the Runtime Support Unit (RSU), that relieves the
runtime system of carrying out DVFS reconfigurations and
can be seen as a minimal extension to existing TurboMode
implementations [16]–[18]. With this hardware support, the
runtime system informs the RSU of the criticality of the tasks
when they are scheduled for execution on a core, and the
RSU reconfigures the voltage and the frequency of the cores
according to the criticality of the running tasks.

Results show that CATA outperforms existing scheduling
approaches for heterogeneous architectures. CATA solves the
blind assignment issue of FIFO schedulers that do not exploit
task criticality, achieving improvements of up to 18.4% in
execution time and 30.1% in EDP. CATA also solves the
static binding and priority inversion problems of CATS, which
results in speedups of up to 12.7% and improvements of up to
25% in EDP over CATS. When adding architectural support
to reduce reconfiguration overhead, CATA+RSU obtains an
additional improvement over CATA of 3.9% in execution
time and 7.4% in EDP, while it outperforms state-of-the-art
TurboMode as it does not take into account task criticality
when deciding DVFS reconfigurations.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
(grant SEV2015-0493, SEV-2011-00067 of the Severo Ochoa
Program), by the Spanish Ministry of Science and Innovation
(contracts TIN2015-65316, TIN2012-34557, TIN2013-46957-
C2-2-P), by Generalitat de Catalunya (contracts 2014-SGR-
1051 and 2014-SGR-1272), by the RoMoL ERC Advanced
Grant (GA 321253) and the European HiPEAC Network of
Excellence. The Mont-Blanc project receives funding from the
EU’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no 610402 and from the EU’s H2020 Frame-
work Programme (H2020/2014-2020) under grant agreement
no 671697. M. Moretó has been partially supported by the
Ministry of Economy and Competitiveness under Juan de
la Cierva postdoctoral fellowship number JCI-2012-15047.
M. Casas is supported by the Secretary for Universities and
Research of the Ministry of Economy and Knowledge of the
Government of Catalonia and the Cofund programme of the
Marie Curie Actions of the 7th R&D Framework Programme
of the European Union (Contract 2013 BP B 00243). E.
Castillo has been partially supported by the Spanish Ministry
of Education, Culture and Sports under grant FPU2012/2254.

REFERENCES

[1] J. Donald and M. Martonosi, “Techniques for multicore thermal man-
agement: Classification and new exploration,” in ISCA, 2006, pp. 78–88.

[2] S. Kaxiras and M. Martonosi, “Computer architecture techniques for
power-efficiency,” Synthesis Lectures on Computer Architecture, vol. 3,
no. 1, pp. 1–207, 2008.

[3] C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, C.-Y. Cher, and
M. Valero, “Software-controlled priority characterization of POWER5
processor,” in ISCA, 2008, pp. 415–426.

9



[4] A. Vega, A. Buyuktosunoglu, H. Hanson, P. Bose, and S. Ramani,
“Crank it up or dial it down: coordinated multiprocessor frequency and
folding control,” in MICRO, 2013, pp. 210–221.

[5] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[6] V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and
F. P. O’Connell, “Making data prefetch smarter: Adaptive prefetching
on POWER7,” in PACT, 2012, pp. 137–146.

[7] H. Cook, M. Moretó, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A hardware evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness,” in ISCA, 2013, pp.
308–319.

[8] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt,
“Morphcore: An energy-efficient microarchitecture for high performance
ILP and high throughput TLP,” in MICRO, 2012, pp. 305–316.

[9] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
Accommodating software diversity in chip multiprocessors,” in ISCA,
2007, pp. 186–197.

[10] “OpenMP architecture review board: Application program interface,”
2013.

[11] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: a proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[12] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a “Codelet” program execution model for exascale machines: Position
paper,” in EXADAPT, 2011, pp. 64–69.

[13] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” in Euro-Par, 2009, pp. 863–874.

[14] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in SC, 2012, pp. 66:1–
66:11.

[15] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos, “A unified
scheduler for recursive and task dataflow parallelism,” in PACT, 2011,
pp. 1–11.

[16] “Intel Turbo Boost Technology in Intel Core Microarchitecture (Ne-
halem) Based Processors,” 2008.

[17] AMD, “The new AMD Opteron processor core technology,” Tech. Rep.,
2011.

[18] D. Lo and C. Kozyrakis, “Dynamic management of TurboMode in
modern multi-core chips,” in HPCA, 2014, pp. 603–613.

[19] M. Valero, M. Moretó, M. Casas, E. Ayguadé, and J. Labarta, “Runtime-
aware architectures: A first approach,” International Journal on Super-
computing Frontiers and Innovations, vol. 1, no. 1, pp. 29–44, Jun. 2014.

[20] M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. Unsal, A. Cristal, E. Ayguade, J. Labarta,
and M. Valero, “Runtime-aware architectures,” in Euro-Par, 2015, pp.
16–27.

[21] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and D. Pnev-
matikatos, “Prefetching and cache management using task lifetimes,” in
ICS, 2013, pp. 325–334.

[22] M. Manivannan, A. Negi, and P. Stenström, “Efficient forwarding of
producer-consumer data in task-based programs,” in ICPP, 2013, pp.
517–522.

[23] M. Manivannan and P. Stenstrom, “Runtime-guided cache coherence
optimizations in multi-core architectures,” in IPDPS, 2014, pp. 625–
636.

[24] K. Chronaki, A. Rico, R. M. Badia, E. Ayguade, J. Labarta, and
M. Valero, “Criticality-aware dynamic task scheduling on heterogeneous
architectures,” in ICS, 2015.

[25] T. Miller, R. Thomas, and R. Teodorescu, “Mitigating the effects of
process variation in ultra-low voltage chip multiprocessors using dual
supply voltages and half-speed units,” Computer Architecture Letters,
vol. 11, no. 2, pp. 45–48, July 2012.

[26] S. Kumar, C. J. Hughes, and A. D. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,” in ISCA,
2007, pp. 162–173.

[27] Y. Etsion, F. Cabarcas, A. Rico, A. Ramı́rez, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task
pipeline,” in MICRO, 2010, pp. 89–100.

[28] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible Architectural
Support for Fine-Grain Scheduling,” in ASPLOS, 2010, pp. 311–322.

[29] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, 2009.

[30] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[31] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras,
“Introducing DVFS-management in a full-system simulator,” in MAS-
COTS, 2013, pp. 535–545.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009,
pp. 469–480.

[33] D. Chasapis, M. Casas, M. Moreto, R. Vidal, E. Ayguade, J. Labarta,
and M. Valero, “PARSECSs: Evaluating the impact of task parallelism
in the PARSEC benchmark suite,” ACM TACO, pp. 1:1–1:25, 2015.

[34] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in PACT, 2008,
pp. 72–81.

[35] J. Reinders, Intel threading building blocks - outfitting C++ for multi-
core processor parallelism. O’Reilly, 2007.

[36] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
programming the memory hierarchy,” in SC, 2006.

[37] L. V. Kalé and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in OOPSLA, 1993, pp. 91–108.

[38] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar, “Chunking
parallel loops in the presence of synchronization,” in ICS, 2009, pp.
181–192.

[39] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González, “Meeting points: Using thread criticality to adapt multicore
hardware to parallel regions,” in PACT, 2008, pp. 240–249.

[40] H. K. Cho and S. Mahlke, “Embracing heterogeneity with dynamic core
boosting,” in CF, 2014, pp. 10:1–10:10.

[41] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,” in ASPLOS,
2012, pp. 223–234.

[42] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality
stacks: Identifying critical threads in parallel programs using synchro-
nization behavior,” in ISCA, 2013, pp. 511–522.

[43] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in
ASPLOS, 2009, pp. 253–264.

[44] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-based
acceleration of multithreaded applications on asymmetric CMPs,” in
ISCA, 2013, pp. 154–165.

[45] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for
dynamic performance, power, and resource management in chip multi-
processors,” in ISCA, 2009, pp. 290–301.

[46] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in HPCA,
2008, pp. 123–134.

[47] T. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of process
variation and application imbalance in low-voltage chips,” in HPCA,
2012, pp. 1–12.

[48] R. G. Dreslinski, B. Giridhar, N. Pinckney, D. Blaauw, D. Sylvester,
and T. Mudge, “Reevaluating fast dual-voltage power rail switching
circuitry,” in WDDD, 2012.

[49] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for CPU energy reduction,” in PLDI, 2003, pp.
38–48.

[50] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based models
for run-time DVFS orchestration in superscalar processors,” in Comput.
Front., 2010, pp. 287–296.

[51] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip regu-
lators,” ACM TACO, vol. 8, no. 1, pp. 1:1–1:24, Feb. 2011.

[52] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal, “Application heartbeats: A generic interface for specifying program
performance and goals in autonomous computing environments,” in
ICAC, 2010, pp. 79–88.

10


